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About Me . . .

I’m a Professor of Statistics. A typical day’s work:
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And then one day I wrote a successful book . . .
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Then I was interviewed by the media about:

Opinion Polls . . .
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Crime statistics . . .
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Pedestrian death counts . . .
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Making decisions . . .
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Game show strategies . . .
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The Maple Leafs . . .

To: mike.strobel@tor.sunpub.com
From: jeff@math.toronto.edu (Jeffrey Rosenthal)
Date: Wed, 12 Apr 2006 16:11:08 -0400 (EDT)
Subject: my calculations

Hi Mike, good talking to you on the phone just now.

I assumed that in each game, each team has probability 45% of getting
two points, 10% of getting one point, and 45% of getting zero points.

Those figures then lead to the following probabilities for Toronto to beat
or tie each of the various other teams (in total points at end of season):

Prob that Toronto beats Montreal = 0.17%
Prob that Toronto ties Montreal = 0.30%
Prob that Toronto ties Atlanta = 11.5%
Prob that Toronto beats Atlanta = 30.2%
Prob that Toronto ties Tampa Bay = 3.6%
Prob that Toronto beats Tampa Bay = 2.1%

* This gives a total probability of 5.8% (about one chance in 17) for
Toronto to have a chance at the playoffs.
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And lotteries . . .
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. . . Lots of lotteries . . .
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So what is the connection to JUSTICE?

Auric Goldfinger: “Once is happenstance. Twice is coincidence.
The third time it’s enemy action.”
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Probability, Statistics . . . and Justice?

Statistics and Justice both involve
evaluating evidence.

Justice:

“beyond a reasonable doubt”

“balance of probabilities”

“preponderance of the evidence”

Statistics:

“statistically significant”

“the probability is more than X”

“the p-value is less than Y”

(“significant”?? “probability”?? “p-value”??)

In this talk, I will try to: (a) explain how statistical reasoning
works, and (b) illustrate why it must be used with caution.
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How Statisticians Weigh Evidence

Example: Can your friend distinguish Coke from Pepsi? Do a test!

Guesses right the first time. Proof of ability? No, could be luck!

What about twice in a row? three times? ten times?

The p-value is the probability of such a result if it’s just random.

• Guess right once: p-value = 1/2 = 50%.

• Guess right twice in a row: p-value = (1/2) × (1/2) = 25%.

• Guess right five times in a row: multiply (“independent”):
p-value = (1/2) × (1/2) × (1/2) × (1/2) × (1/2)

.
= 3.1%.

The smaller the p-value, the more it seems to “prove” something.

Usual standard: “significant” if p-value less than 5% (i.e., 1 in 20).

For Coke versus Pepsi: two in a row not significant, five in a row is.

Similarly: Disease with 50% fatality rate. New drug: does it work?

If it saves 5 patients in a row, then yes it’s “significant”!
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Statistical Evaluation of Evidence – Summary

So, to evaluate evidence statistically, you should:

• Gather the facts, i.e. the evidence, i.e. the “data”.
(e.g. # times in a row your friend distinguished Coke from Pepsi)

• Compute the p-value, i.e. the probability of such a result by
chance alone – often by multiplying (if independent).

• Conclude “significance” if the p-value is very small (e.g. < 5%).

This approach is used in medical studies, scientific experiments,
psychology studies, sociology, economics, . . . indeed throughout
science and social science. It often works very well.

So, what could possibly go wrong?

Lots of things!

As we will see . . .
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Just the Facts?

The actual facts are often not what they appear.

Example: “80% of bar fights involving fatalities were started by the
victim”. How do they know? (“sampling bias”)

Example: Interviews with successful musicians. (“reporting bias”)

Example: Toronto 2005 “Summer of the gun”. Homicides up 22%.

Media: “guns used to bathe Toronto in blood”; “Toronto has lost
its innocence”; “Gun-crazed gangsters terrorise at will”; “people
were tripping over police tape and bullet-riddled bodies on their
way to work”.

Facts: Homicide rate per 100,000 people, 2005: Toronto CMA 1.95,
Winnipeg 3.73, Regina 3.99, Edmonton 4.26, Canada 2.06.

So why did people think Toronto was so unsafe? (“headline bias”)

So, first, get the facts right, without bias!

Toronto 2006: rate down again (1.86); “regained its innocence”??
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Interpreting Probabilities:

Out of How Many?

Suppose you read that John Smith of Orillia won the Lotto 6/49
lottery jackpot. Cheater? Let’s do some statistical analysis!

Probability of winning jackpot = one in 14 million (13,983,816).

So, is the p-value one in 14 million?

If so, does this mean that John Smith cheated??

No, of course not. But why not?

The “out of how many” principle: We should compute the
probability of some such event occurring.

In this case, one person won the jackpot, out of millions of people
who bought a ticket.

Not surprising at all. The “real” p-value is not small. (Subtle!)

So, no suspicion of fraud/cheating.
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Out of How Many: Example

True story: Ran into my father’s cousin at Disney World!

Surprise! One chance in 230,000,000? Proves something?

But wait. We saw several thousand people there.

And, we would have been surprised by hundreds of people.

It follows that some such meeting had about one chance in 200.

Might well happen over a lifetime. (Has it to you?)
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TV Interview: Reunited Half-Brothers

Striking? Yes. Deeper “meaning”? No, just chance!

Out of how many other estranged Americans?

One success out of a million is luck, not “meaning”.
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Legal Case: Sally Clark

• Solicitor in Cheshire, England.

• Had two sons; each died in infancy.

• “cot death” (SIDS)? Or murder!?!

• 1999 testimony by paediatrician Sir Roy
Meadow: “the odds against two cot deaths
in the same family are 73 million to one”.

• Convicted! Jailed! Vilified! Later,
third son taken away from her (temporarily)!

Was “73 million to one” computed correctly?
Was it the right thing to compute? Perhaps not!

How did Meadow compute that “73 million to one”?

He said the probability of one child dying of SIDS was
one in 8,543, so for two children dying, we multiply:
(1/8, 543) × (1/8, 543) = 1/72, 982, 849 ≈ 1/73, 000, 000.
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Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid?

No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No!

SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families,

so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case,

the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid?

No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No!

The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303.

Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability

(no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26).

But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability

(e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid?

No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No!

Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family,

that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence.

What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”?

(Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”:

conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society:

“approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides,

given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides.

Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question!

(Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?)

Estimated as perhaps just 1/3.

(21/45)



Clark Case: Valid Probability Calculation?

Was the multiplication valid? No! SIDS tends to run in families, so
once a family has had one SIDS case, the second one is more likely.

Was the figure 1/8,543 valid? No! The overall probability of SIDS
in the U.K. was 1/1,303. Meadow got 1/8,543 by “adjusting” for
family circumstances that lower the SIDS probability (no smokers,
someone employed, mother over 26). But neglected other factors
which raise the probability (e.g. boys twice as likely as girls).

Was the interpretation valid? No! Even if “one in 73 million” is the
correct probability of two SIDS cases in this specific family, that’s
still not the same as the probability of Clark’s innocence. What
about “out of how many”? (Millions of families in the U.K.!)

“Prosecutor’s Fallacy”: conflating two different probabilities.

Royal Statistical Society: “approach is . . . statistically invalid”

What’s really needed is the probability of two infanticides, given
either two SIDS deaths or two infanticides. Different (and subtle)
question! (Bayesian?) Estimated as perhaps just 1/3.

(21/45)



Clark Case: Aftermath

• Sally Clark was eventually acquitted, on second appeal,
after more than three years in jail. But she never recovered
psychologically, and died of alcohol poisoning four years later.

• The U.K. General Medical Council ruled that Meadow’s
evidence was “misleading and incorrect”, and that he was guilty of
“serious professional misconduct”. He was effectively barred from
any future court work.

• The prosecution pathologist Alan Williams was found to have
not reported evidence about an infection in the second son (which
suggested death by natural causes). The GMC found him, too,
guilty of serious professional misconduct.

• Several other people’s convictions were overturned on appeal.

• Prosecutors/judges everywhere learned a valuable lesson. (?)
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An Earlier Similar Case: Malcolm Collins

• On June 18, 1964, in Los Angeles, an elderly lady was pushed
down in an alley, and her purse was stolen.

• Witnesses said: a young Caucasian woman with a dark blond
ponytail ran away with the purse into a yellow car which was driven
by a Black man who had a beard and moustache.

• Four days later, Malcolm and Janet Collins were arrested,
because they fit these characteristics (mostly).

• At trial, the prosecutor called “a mathematics instructor at a
nearby state college”. The prosecutor told the mathematician to
assume certain (“conservative”?) probabilities:

– Black man with a beard: 1 out of 10
– Man with moustache: 1 out of 4
– White woman with blonde hair: 1 out of 3
– Woman with a ponytail: 1 out of 10
– Interracial couple in car: 1 out of 1,000
– Yellow car : 1 out of 10
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The mathematician then computed the probability that a random
couple would satisfy all of these criteria,

by multiplying:

(1/10)×(1/4)×(1/3)×(1/10)×(1/1000)×(1/10) = 1/12, 000, 000

Was this reasoning valid?

• The facts? No, these individual probabilities were just assumed.

• Multiplying? No way! e.g. if have a
beard then likely also have a moustache!

Similarly, if have Black man and White woman,
then of course have an Interracial couple!

The calculation was extremely faulty!

• Correctly interpreted probability? No! Remember “out of how
many”! Los Angeles County population in 1964: 6,537,000. So,
the probability of two such couples is quite large!

And again, what’s really needed is the probability of Collins being
guilty given all of the above characteristics – a different and subtle
question with a much smaller answer.
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• Collins was convicted at trial, based on this 1/12M probability.

• Supreme Court of California appeal, March 11, 1968:

“We deal here with the novel question whether evidence of
mathematical probability has been properly introduced and used by
the prosecution in a criminal case. While we discern no inherent
incompatibility between the disciplines of law and mathematics and
intend no general disapproval or disparagement of the latter as an
auxiliary in the fact-finding processes of the former, we cannot
uphold the technique employed in the instant case. As we explain
in detail, infra, the testimony as to mathematical probability
infected the case with fatal error and distorted the jury’s traditional
role of determining guilt or innocence according to long-settled
rules. Mathematics, a veritable sorcerer in our computerized
society, while assisting the trier of fact in the search for truth, must
not cast a spell over him. We conclude that on the record before us
defendant should not have had his guilt determined by the odds
and that he is entitled to a new trial. We reverse the judgment.”
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Another Case: Lucia de Berk

• Hospital nurse in The Hague, Netherlands.

• Arrested for several murders and attempted
murders, after discovery that despite working
just 203 of the 2,694 shifts in her three wards,
she was on duty for 14 of 27 “incidents” (i.e.
deaths, or near-deaths requiring reanimation).

• Prosecution (2003): one chance in 342 million by chance alone!

• Accurate facts? Some controversy whether all these incidents
had actually taken place during de Berk’s shifts (not just before or
just after), and whether definition of “incident” was adjusted post
hoc. Also, she was assigned to many elderly/terminal patients, etc.

• Accurate interpretation? No! Out of how many? Once again,
the probability that de Berk is guilty given the above facts is quite
a different probability from this “one chance in 342 million”.

• Valid calculation? Many statisticians thought no!
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de Berk Case: Valid Probability Calculation?

• The prosecution statistician, Henk Elffers, had tried to account
for “out of how many”, by multiplying by 27 (the number of nurses
in one of the hospitals).

• Is that sufficient? Surely not! Many more nurses somewhere in
the Netherlands / World. Multiply by all of them?

• One statistics paper complained that “the data are used twice:
first to identify the suspect, and again in the computation of
Elffers’ probabilities”. It made numerous “adjustments”, and
eventually reduced “1 in 342 million” to “1 in 45”!

• I actually think this paper adjusted too much, and Elffers
calculations weren’t so unreasonable. But “1 in 342 million” is
surely too small, and was surely not interpreted correctly.

• Another twist: de Berk’s diary! e.g. on the day of one (elderly)
patient’s death, de Berk wrote that she had “given in to her
compulsion.” (of reading Tarot cards??)
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de Berk Case: So What Happened?

• de Berk was convicted of multiple murders and attempted
murders in March 2003, primarily on the basis of “1 in 342 million”.

• The convictions were upheld on appeal, June 2004.

• However, by the appeal date, enough doubts had been raised
about the statistical calculations that the conviction was upheld
mostly on other grounds, notably elevated digoxin levels in some of
the corpses (evidence of poisoning?).

• October 2007 Dutch “Posthumus II Commission” report: “the
hypothesis of digoxin poisoning was disproven [through new testing;
similar to Susan Nelles case], the statistical data were biased and
the analysis incorrect, and the conclusions drawn from it invalid.”

• Case reopened June 2008. Not guilty verdict, April 2010.

• Of course, she still might be guilty! (Mercy killings?)

• But the statistical evidence wasn’t convincing.
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A Statistical Success:

Insider Lottery Wins

CBC Fifth Estate: 200 out of 5,713 major ($50,000+) Ontario
lottery prizes from 1999–2006 were won by ticket sellers.

Is that too many? Suspicious? (One case was already known . . . )

Using various different OLG figures, I computed that the expected
number of major Ontario lottery wins that retail sellers should win
was about 35, or 57, or . . . (Much less than 200!)

Given this, the p-value (i.e., the probability that the sellers would
win 200 or more major wins by pure luck alone) was between one
chance in trillions of trillions, and one chance in ten billion.
Extremely small!

CONCLUSION: retail lottery sellers were definitely winning
significantly more than could be explained by chance alone.
So, there was indeed some lottery fraud!

CBC broadcast scheduled for evening of Wed Oct 25 . . .
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Ombudsman:

“$100 million to lottery insiders”
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Heads Roll!
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New Rules For Signing and Checking Tickets

(37/45)



The Police Investigate
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$5.7 Million Repaid to Rightful Winner!
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Another $80,000 Repaid!
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Later, Three More Retailers Charged . . .
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Could the True Winners be Found?
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Found them! (January 2011)
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